

PARSING AND AMBIGUITY TESTING OF XML DOCUMENTS

Dr. Eng. Ioan Cauţil

Redline Communications, Craiova

Abstract: The paper analyses the grammar of XML elements an presents algorithms

for testing ambiguity of elements and to check the structure of XML documents

versus the definition of the elements.

Keywords: XML

1. INTRODUCTION

The paper presents the implementation of an XML

parser in [4]. XML is widely used to describe the

data structures. An XML document consists of

elements defined by the user with attributes and

content (other elements as children). The first task of

an XML processor is to parse the DTD statements (in

many cases in a DTD file). The second task is to

check the structure of the XML document versus the

definition of the element. The content of an XML

element is defined by element type declaration with

the form

elementdecl ::= ‘<!ELEMENT’ S Name S

contentspec S? ‘>’

contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | Children

In the above productions S is a sequence of one or

more white spaces and Name is the element name. In

the sequel ? + and * are operators used to describe

regular expressions. If A is a regular expression A?

matches A or nothing, A+ matches one or more

occurrences of A and A* matches zero or more

occurrences of A. The parentheses, (and), can be

used to group sub expressions. The | (pipe) means or

(if A and B are regular expressions, A | B means A or

B). The following grammar of element content is

taken from the XML specification (W3C, 2004).

[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? Name)* ‘)*’

| ‘(‘ S? ‘#PCDATA’ S? ‘)’

The keyword #PCDATA denotes character data. The

mixed content means the element may contain

character data interspersed with child elements. The

element content is defined as

[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?

[48] cp ::= (Name | choice | seq) (‘?’ | ‘*’ | ‘+’)?

[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)+ S?’)’

[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’

In this case the element must contain only child

elements. An EMPTY content means the element

may not have any content and an element defined

with ANY content may contain any other elements.

The number of productions is that of XML

specification (W3C, 2004).

2. PARSING THE GRAMMAR

We will analyze only the grammar for children. The

production [49] is transformed as

[49a] choice ::= ‘(‘ S? cp S? ‘|’ S? cp (S? ‘|’ S? cp) * S? ‘)’

The grammar for children is rewritten as

Table 1 XML Grammar

 FI

RS

T

FO

LL

OW

SE

LE

CT

1 <S> � (<P><Z>) ((

2 <Z> � <P> <Clist> | |

3 <Z> � <Elist> ,) ,)

4 <Clist> � |<P><Clist> | |

5 <Clist> � epsilon))

6 <Elist> � , <P> <Elist> , ,

7 <Elist> � epsilon))

8 <P> � a a a

9 <P> � <S> ((

<S> is the starting symbol of the grammar and

epsilon is the null sequence. In the grammar we

denoted the terminal symbol) and the strings of

terminal symbols)?,)* and)+ as). We will show the

above grammar is an LL(1) grammar. For

presentation of such grammar see (Aho et al., 1997;

Lewis et al., 1976). We need the following

definitions from (Lewis et al., 1976).

The FIRST sets. Given a context-free grammar and

an intermediate string alpha of symbols from the

grammar, define FIRST(alpha) to be the set of

terminal symbols that occur at the beginning of

intermediate string derived from alpha.

The FOLLOW sets. Given a context-free grammar

with starting symbol <X> define FOLLOW(<X>) to

be the input symbols that can immediately follow an

<X> in an intermediate string derived <S>@ where

@ is the end marker of the input sequence.

The SELECT sets. A string alpha of symbols from

grammar is nullable if alpha can be transformed in

epsilon by zero or more substitutions. A production

of grammar is nullable if its right hand size is

nullable. Given a production

<A> � alpha

where alpha is a string of terminals and nonterminals,

define

SELECT(<A>� alpha) = FIRST(alpha)

if alpha is not nullable, and

SELECT(<A> � alpha) = FIRST(alpha) U

FOLLOW(<A>)

if alpha is nullable.

Finally, a context-free grammar is called an LL(1)

grammar if productions with the same left hand size

have disjoint SELECT sets.

In the above grammar we need to compute the

FOLLOW sets for productions 3, 5, and7.

Examining the SELECT sets for productions with the

same left hand size, they are disjoint so the grammar

is LL(1).

3. THE ELEMENT TREE

The element tree is a modification of the derivation

tree, see (Aho et al., 1997; Lewis et al., 1976). The

element tree has as leaves terminal symbols (Name in

production [48] or a in the grammar) and operators |,

*+? in nodes (| for or and , for and operators). For

example, the sequence

(a, b, d)

has the tree

 (,)

 --- (a)

 --- (b)

 --- (d)

The element

(a | b | d)*

has the tree

 (*)

--- (|)

--- (a)

--- (b)

--- (d)

The composed element

((a, b), (x | y))

has the tree

(,)

--- (,)

--- (a)

--- (b)

 --- (|)

--- (x)

--- (y)

In the sequel we will use the element tree to calculate

the FIRST and FOLLOW sets for element.

4. AMBIGUITY TESTING

When we define an XML element having children, is

important for an XML processor to be able to test if

the element content conforms its definition. The

standard includes an optional requirement that the

content model of an element be deterministic. The

content model of the element

 ((b, c) | (b, d))

is called nondeterministic because giving an initial b

terminal symbol, the processor cannot know which

branch in the element tree to follow without looking

ahead which element follows the terminal symbol b.

Considering the grammar of the above content model

1. <X> � bc

2. <X> � bd

in not a LL(1) grammar. To test if an element is

ambiguously defined we will test if its grammar is

LL(1). We use the element the tree of element to

calculate its FIRST and FOLLOW sets to test if its

content model is deterministic. To get an algorithm

we will derive the grammar of element from the

regular expression. In regular expression we have the

following rules

1) The unary operators * + ? have the highest

precedence and are left associative

2) The concatenation operator , has the second

highest precedence and is left associative

3) The union operator | has the lowest

precedence and is left associative

4) The parenthesis (and) are used to change

the precedence of operators

The rules used to derive the grammar are following

1) Each expression in parenthesis is denoted by

a nonterminal symbol

2) Each terminal and nonterminal symbol

followed by an unary operator * + ? is

denoted by a nonterminal symbol

For the nonterminal symbol

 Z = R* (1)

where R is a nonterminal symbol, we define the

following productions of the grammar

 <Z> � <R><Z> (2a)

 <X> � epsilon (2b)

For the nonterminal symbol

 R = (A1 | A2 | … |An) (3)

we define the following productions

 <R> � <A1> (4a)

 <R> � <A2> (4b)

 ……………

 <R> � <An> (4n)

For the nonterminal symbol

 R = (A1, A2, …, An) (5)

we define the following productions

 <R> � <A1><X2> (6a)

 <X2> � <A2><X3> (6b)

 ……………

 <Xn> � <An> (6n)

For example, the element

 (a, (b | c)*, d)

is described by the following grammar

 <S> � a<X1>

 <X1> � <Z><X2>

 <X2> � d

 <Z> � <R><Z>

 <Z> � epsilon

 <R> � b

 <R> � c

The element tree from the previous section

corresponds to this grammar. We will use the

element tree to calculate the FIRST and FOLLOW

sets of the grammar.

4.1 The FIRST sets

1)For the nonterminal symbol (3) the FIRST set is

the union of FIRST sets of nonterminals <A1>,

<A2>, …, <An>

2) For the nonterminal symbol (5) the FIRST set is

the FIRST set of <A1> if <A1> cannot be

transformed in epsilon, else is the union of the FIRST

sets of <A1> and <A2> if <A2> cannot be

transformed in epsilon, and so on.

3) For a node labeled as * + ? the FIRST set is the

FIRST set of its child.

4.2 The FOLLOW sets

The FOLLOW sets are computed only for nodes

labeled *+?. Consider the FIRST sets for all nodes

already computed. Let n be such node and p its

parent. Let followset(n) be the FOLLOW set of node

n and firstset(n) its FIRST set. Let

 n.getParent()

be a function that gives the parent of node n and

 n.getNextSibling()

be a function that gives the next sibling of node n.

The algorithm to compute the FOLLOW set of node

n is the following

 p = n.getParent()

 followset(n) = empty set

 while(n = = ‘*’ || n = = ‘?’ || n = = ‘+’)

 {

 s = n.getNextSibling()

 if(s != null)

 {

followset(n) =

followset(n) U firstset(s)

 n = s

 }

 else

 {

 n = p

 p = n.getParent()

 }

 }

5. TESTING THE ELEMENT TREE

The last task of an XML parser is to compare the

content each element of XML document (element

tree) with the element definition. This is done by

comparing the element tree from XML document

with the derivation tree. Consider the function

int procChild(List elemChildren, Node node)

where elemChildren is the list of children of a given

element from the XML document and node is the

root node of the derivation tree. In the sequel the

name of the node is * or + or ? for unary operators

and | and respectively , for binary operators. For

leaves the node name is the element name. The

function returns 1 if there is a match for the first

element in elemChildren list and a leaf in the

derivation tree, else 0. In the case of a , node

(operator ,) the algorithm is

 if(node = = ‘,’)

 {

// in this case we have to match all

elements

// of the derivation tree with the

elements of the list

 viter = node.children()

 while(viter.hasMoreElements())

 {

 a = viter.nextElement()

 x = procChildren(elemChildren, a)

 if(x = = 0)

 return 0

 }

 return 1

 }

The case of a | (operator |) is treated in the same

manner. In the case of an * node (operator *) we

have the following algorithm

 if(node = = ‘*’)

 {

// try to match as many as possible

elements of the list

 a = node.getFirstChild()

 x = procChildren(elemChildren, a)

 if(x = = 0)

 return 1

 while(x > 0)

 x = procChildren(elemChildren, a)

 }

The case of + and ? nodes is simple and is not

presented. In the case of a leaf we try to match the

first element from the elemChildren list.

 if(elemChildren.size() = = 0)

 return 0

 if(node = = elemChildren.getFirst())

 {

 elemChildren.removeFirst()

 return 1

 }

 else

 return 0

For the source code and an application implementing

the above algorithms see (Cautil, 2004).

6. CONCLUSIONS

The paper proposed an algorithm for ambiguity

testing of XML elements. The FIRST and FOLLOW

sets of the grammar are computed using the element

tree. An algorithm for testing the content of elements

using the derivation tree is proposed.

REFERENCES

Aho A, Sethi R., Ullman J. D., (1997). Principles of

Compilers Design, Addison Wesley

Cautil, I.,(2004). www.cautil.org

Lewis P. M., Rozenkrantz D., Stearns R. E., (1976).

Compiler Design Theory, Addison Wesley

W3C, (2004). Extensible Markup Language (XML)

1.0 (Second Edition),

http://www.w3c.org/TR/RECXML

